close
-------------------------------------------------------------------------------------------------數據合併concat.append pd.concat([df1,df2,df3],axis=0,ignore_index=True)axis=0垂直合併 ignore_index=True重新編號index pd.concat([df1,df2],join='inner') inner會刪除有nan的那行,默認join='outer'使空值呈現nan pd.concat([df1,df2],axis=1,join_axes=[df1.index])axis=1列合併,join_axes=[df1.index]主要index以df1為主 Ex:如果df1的index是1.2.3,df2是2.3.4則合併後只會有index:1.2.3 df1.append([df2,df3],ignore_index=True)將df2,df3直接加在df1後面 df1.append(pd.Series([1,2,3,4],index=['a','b','c','d']),ignore_index=True)增加單列數據 ------------------------------------------------------------------------------------------------數據合併merge,one key left=pd.DataFrame({'key':['K0','K1','K2','K3'], right=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0','A1','A2','A3'], 'C':['C0','C1','C2','C3'], 'B':['B0','B1','B2','B3']}) 'D':['D0','D1','D2','D3']}) print(pd.merge(left,right,on='key'))
全站熱搜